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The present paper concerns the optimization of the trackin process (with allowance 
# for measurement errors) in a system whose motion is descrl ed by linear differential 

equations. It is shown that under certain assumptions the problem reduces to one of 
ordinary optimal control. Further analysis using the maximum principle enables us to 
reduce the initial problem to a system of transcendental equations. Examples illustra- 
tin 

J 
optimal tracking strategy in s ecific cases are discussed. 

roblems of optimal control in 5, e absence of complete information, i.e. with in- 
complete and inexact measurements or observations, are of reat interest in control 
engineering. Various approaches to optimal control and 8. trac rng problems with incom- 
plete information are considered, for example, in [I-a~, whose authors employ both 
probabilistic and minimax formulations, 

1. The lnftirl ferlatiou#, Let the state of a system at any instant be defined 
by an n-dimensional phase coordinate vector 2. The law of variation of 5 (t) takes 
the form of a determinate linear system of ordinary differential equations, 

dz / dt = A (l)t + b (t) (1.1) 

where A is an n X n matrix and b is an dimensional vector. System (1.1) can 
be regarded in many cases as a system in variations near the theoreticai (nominal) na- 
jectory of the initial nonlinear system. 

The motion of the system is considered over the time interval [to, 2’1; the phase 
coordinates of the system are observed (measured) at rhe fixed instants t,, 1,,. ..,trv = 

- 7’. Here tR <tR+r for k = O,l,...,N - 1. By “observation” ateach ins- 
tant of time t, we mean the approximate me~urement of certain linear combination 
of the components of the vector z (tk), i.e. measurement of the vector Qk 5 (t,,). 
Here Qk is a given rectangular matrix with Zk rows and .n columns. The integer 
ZR > 0 is the number of scalar parameters measured at the instant th, k = 0,i ,. 

-*> N. We assume that the error of each observation is a random I k-dimensional 
vector quantit)l distributed according to a normal law with zero mathematical expect- 
ation and a known correlation matrix Be. The term “correlation matrix” is used throu- 
ghout the present paper to refer to an unnormalized correlation matrix (a second-mom- 
ent matrix). The measurement error at a given instant is assumed to be independent of 
the errors at the other instants. 

Thus, the result of observation at the instant 1k is a random Zb -dimensional vec- 
tor quantity y& with a normal distribution law. Its mathematical expectation is equal 
;z 2 true value of Qrx (tr), and its In X I* correlation matrix is known and equal 

h* 
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The values of the phase vectors at the instants of observation are related by the linear 
expressions 

2 G~+I) = &x (GJ + b, (k=O, I,..., N--i) U -2) 

Equations (1.2) follow from the linearity of system (1.1). The matrix A k and the 
vector b, depend on the matrfx A and the vector 6 in the interval [TV, tk+,]. 
Explicit expressions for A r, and b, can be readily written by the method of variation 
of arbitrary constants provided we know the marrix of fundamental solutions for the homo- 
geneous equation corresponding to (1.1). Relations (1.2) are also valid if the system mo- 
tion is described by finite-difference equations or if equations of motion (1.1) are impul- 
sive in character (e.g. if b (t) is a delta function). 

Let the probabilistic distribution of the initial value of the phase vector x (t, - 0) 
just before the start of the process be known. We consider this distribution to be normal 
with me mathematical expectation x0 and the correlation matrix D,. The purpose of 
tracking is to enable us to indicate the mathematical expectation and correlation mat- 
rix for an unknown instantaneous value of the phase coordinate vector at any instant. 

b 
These quantities (the mathematical ex ectation and correlation matrix) vary, first, 

Y 
virtue of the equations of motion, an B second, as a result of the measurements. All 

o the probabilistic distributions are assumed to be normal, and the results are rreated 
by the method of maximum plausibility 1‘1. The analytical scheme which we describe 
and conversion formulas (1.3) are given in [a]. 

Let us denote by xh and x5 * the mathematical expectations for me unknown vector 
3 (t k) at the instanrs tA - 0 and tk + 0 , respectively, i.e. just before and just 

after the k-th measurement (k = O,l,...,N).By DA and Dk* we denote the 
correlation matrices for the vector x’ at the instants LA - 0 and sI, + 0. 

It can be shown that the following conversion formulas are valid (the primes denote 
uansposed mauices); 

XL* = =, +D,*QL’%-~($-- Qrxk), Dk* = (D,-‘+ Qr’Bk-‘Q&l (1.3) 

To derive (1.3) we note that the quantity zk can be regarded as the result of mea- 
suring the phase vector t (tL) with the correlation matrix D,, and yk as the result 
of measuring the vector Qr,t (I,,) with the correlation matrix B,. Let us construct the 
plausibility function for these two measurements by the method of maximum plausibi- 

lity I’] , 

L = C exp I- l/, (Ok-l (tk* - t,J, (tr’ - x,&J x 
x exp I- % (Bta-’ (Q&ZA+ - VA), (Q&+k’ - Yb))l (I.41 

Here the constant C does not depend on tk+. The comma denotes scalar multipli- 
cation of vectors. The required mathematical expectation can be determined from dre 
maximum condition for function (1.4) with respect to zk* . Setting the gradient of the 
function L with respect to zI+ equal to zero, we obtain 

D I-’ ( zL+ - tr) -I- Qk’B,-’ ( QIQ’ - VI,) = 0 

This yields the relation 

q,* - F$j,-‘=h + FhQh’Bh-‘uh, F, - (DA-’ + Qll’Bh-lQh)-l (i.6) 
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The quantities z~*, thr yh can be regarded as normally distributed random quanti- 
ties with the correlation matrices DA*, Dk, B,, respectively; the quantities I&, r/r, 
are independent. Linear relation (1.5) then implies the following relationship 1’1 for 
the second-moment matrices: 

DA’ = (FkDk-')Dh (FkDk-')I+ (FI,Q~'B~-l)BI,(FI,QI'BL-l)' = 
= FkD,,-Wk + FkQ,'Bk-=Q,,Fk = F,,(Dk-I+ Qk'Bk-'Q,)F, - 

= F,F,-IF, = F, = (Dk-’ + QkBkQL)-l (W. 

In writing out transformations (1.6) we used Formula (1.5) for F,, as well as the 
symmetry property of the matrices D,, Bk, Fk and their inverses. By some elemen- 
tary transformations we find from (1.5) and (1.6) that 

zk+ = zh + F, QA'BA-%A - ZA f FADkel~A = ZA + F,Q,'Bk-'uk - 
- FA((FA-1 -DA-')zA = IA + FI,QA'BA-'vA - FAQA'BA-~QA~A =f 

L 2~ f FAQA’BA-’ (VA - QA~L) = SA + DA* QA’BA-’ (VA - QA~ 

Since no measurements are made in the invervals between the instants t A and t k+s , 
we can write the following expressions on the basis of linear relations (1.2) 

xk+l = Akxk* + bk, Dktl - ARDR*AP’ (1.7) 

Relations (1.3) and (1.7) are our point of departure; they describe the variation of the 
mathematical expectation and correlation matrix as a result of tracking process (1.3) 
and motion process (1.7). In order to carry out computations using recursion formulas 
(1.3) and (1.7) we need to choose initial values x0, D, and measurement data y A. 
The variation of the correlation matrix does not depend on the measurement data YA 
and can be computed in advance. 

2. Taking the limit. Let us set 

7 = (T- la)lN, t,= r,+k7 (k=0, I,..., N) 

and introduce matrices B (t) and 0 (t) such that 

B k = B(t,) r-l, Qk = Q (tk) (k =o, I, . . . , N) (2.1) 
We now take the limit, making 7 +O, N + co withN7 = T - to= const. 

This 
!s 

assage to the limit corresponds to the case of ver 
b 

frequent observations (continu- 
ous 0 ervation in the limiting case). The error of eat observation is then large (the 
elements of the matrix B, are proportional to 
interval is finite. 

T-I), but the accuracy over a finite 

From Eq. (1.1) we find that to within higher-order small terms 

x ltA+l) = 5 @A) -k r[A (tAJx @A) + b @A)] 

Comparing this relation with Eq. (1.2), we find that 

AA =A?.? $-=I @A), bA = Tb (tA) (2.2) 

where E is an n X n unit matrix. Substituting Eqs. (2.1). (2.2) into Eqs. (1.3). 
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we find that to within higher-order small terms 

Xk’ = Xi + 701 Q’ 0AP’ P&I [Yr - Q (&JXA 

DA+ = {Dr-‘[E + TD~Q’ (i,JB-’ (tA)Q (tk)l}-’ = IE - TD~Q’ (tJ x 

xB-l (th)Q (tr)lD~ =D, - TII I Q' (t b) B-‘(h) Q(t ,)D L 

Substituting these relations and Eqs. (2.2) into Eqs. (1.7) and again omitting small 
terms of order Ta and higher, we obtain 

XA+l = XA -j- T{&)XR -t b(t~) -@kQ’@~)B-~(tk)[dl~ - Q(t*)X& (2.3) 

D k+l = D R + T [A (t JD A + D kA ‘(t RI - D A Q'O r)B-'(t d Q(t RP kl 

We denote by E (t) and D (t) the mathematical expectation and correlation mat- 
rix for the phase vector x (t) computed at the instant t. Then X, = t(t L), D A = 
= D (tr) for k = 0, 1, . . . . N. Moreover, we denote by y (t) the result of 

measurements at the instant t, so that Y A = Y (TV) for k = 0,1,...jr. Taking the 
limit as X -_t 0, we obtain from (2.3) the differential equations 

dk/dt =AE +b +DQ’B-‘(y - QE) (2.4) 
dD Jdt =AD +DA’-DQ’B-‘QD (2.5) 

The initial conditions for Eqs. (2.4), (2.5) are the equations t (to) = 30, D (10) = 
- Do, which specify the mathematical expectation and the correlation matrix for the - 

phase vector x (to) before the start of the process. Equation (2.4) is a stochastic diff- 
erential equation, and Eq. (2.5), which does not depend on the random measurement 
result, is an ordinary differential equation. 

If the m$asuremenrs are sufficiently frequent, then it is convenient to consider differ- 
ential equations (2.4), (2.5) instead of finite-difference equations (1.3)) (1.7). The 
function B (t) characterizes the measurement error per unit time. However, Eqs. (2.4), 
(2.5) can also be used when the measurements are made at discrete instants. In this case 
the function B-r (1) is impulsive (of the delta function type). 

We note that B (1) is an 2 X 1 square matrix, and that Q is an 1 x n rectangular 
matrix. The number 1 (1) is equal to the number of scalar parameters measured at the 
instant t and can vary in the course of motion. 

Equations (2.4), (2.5) are also valid when the matrix A and the vector b in system 
(1.1) depend on the control or on the external perturbations. It is important to note that 
Eq. (2.5) does not depend on the function b, which can be arbitrary. 

8. Trrcking COnttOl. Let us write Eq. (2.5) in the form 

dD/dt= AD+DA’-DVD (I’ = Q’B-‘Q) (3.1) 

It is easy to see that like the matrices 8 and D, the II X n matrix V is symm- 
etric and positive-definite. It characterizes the accuracy or “intensity” of the tracking 
process (V c 0 if no observations are made). The matrix Y depends on how many 
and which parameters are measured (this is determined by the maaix Q),. and on the 
error brackets of these measuremenrs (these are characterized by the maaix B). 

If the tracker is able to vary the selection of observed parameters or the.accuracy of 
their measurement, then the maaix v in Eq. (3.1) can be regarded as a conaolling 
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function. It can be subjected to the restrictions 

WE Wt) (b(t<T) (3.2) 

where u (t) is a closed set of matrices characterizing the tracker’s freedom of choice. 
Let us also inrroduce the integral functional 

T 

Jo= - f(K t)dt 3 (3.3) 
. 

Here the scalar function f is defined for all t E [to, T], v E uand characterizes 
the cost of the observations. 

For example, let the set Ufor any t consist of two fixed matrices 0 and V,, and 
let the function f be given by the relations 

f (0, t) = 0, f (VII, t) = 1 

In this case the tracker can either conduct his observations in a fixed way (using the 
matrix v,,) at every instant, or he can refrain from observation. The functional J 
of (3.3) then sim 

The purpose o P 
ly represents the total duration of the tracking process. 
tracking is usually to determine the values of certain functions of the 

phase coordinates at specific instants with a prescribed or a minimal error. Let Tt,..., 
T, be instants specified in the interval [to, 2’1, and let zl, .,..,z,,, be the scalar 

parameters of interest to the tracker at these instants. Some of the quantities T, may 
coincide, which means that several 

P 
arameters are of interest at some of the imtants. 

Limiting ourselves, as in system (1. ), to a linear approximation (in the neighborhood 
of some nominal trajectory), we represent the parameters zI as linear functions of the 
phase coordinates, 

(i = I, . . . , m) (3.4) 

Here qr are specified n-dimensional vectors and Q; are constarns. Recalling that 
the correlation matrix for the vector 5 (T,) is equal to D (T,), we apply certain 
familiar rules [ 4 ] to (3.4) to obtain the dispersion J, of the quan;ty zI , 

J{= i Djk(Ti)!l,j!?: (i=i,...,m) 
i. k=l 

(3.5) 

Here and below the superscripts represent the numbers of elements in the vectors and 
matrices. We note that the quantities given by (3.5) are linear with respect to the ele- 
ments of the matrix D, which 
characterize the errors involve 8. 

lay the role of the phase coordinates. Functions (3.5) 
m determining the arameters of interest. 

Now let us formulate some variants of the optima P uacking problem. We can pose 
the problem of finding the conuol V (t) which satisfies restrictions (3.2) for all 
t E [to, T] and minimizes functional (3.3) under the condition rhat functionals (3.5) 
assume specified values. ‘Ibe phase coordinates D (t) are determined by Eqs. (3.1) 
and the initial condition D (ts) = D,,. This problem is a conventional optimal prob- 
lem with an integral functional, a restriction on the conuol, and linear multipoint 
boundary conditions. The number of phase coordinates and controlling functions, i.e. 
the number of elements in the mauices D and Y is n’ . However, since these 
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matrices are symmetric, we need consider only n (n + i) / 2 of their components. 
Instead of minimizing the functional Js of (3.3) (the tracking cost) we can require 

minimization of one of the functionals 
of determinin 

J,, of (3.5), i.e. we can minimize the error 

functlonal(3. \ 
one of the parameters (3.4). 
) may be given in this case. 

The remaining functions (3.5). as well as 

If the measurements are made at discrete instants, then 

v(t) = i V,(t)6(t- tr) 
k-1 

(3.6) 

Here % is the number of measurements, 6 is the delta function, VI (t) are the 
prescribed matrix functions (which may be constant), and tk are the imtanta of mea- 
surement. We can pose the problem of optimal choice of the numbers tl, from the 
interval [to, 2’1 or from a part of this interval in such a way as to minimize one of 
the functionals of the form (3.5) (possibly for given values of the other functionals). 
This problem is one in nonlinear programmin 
process optimization are 

Still other formulations of tracking 

tracking problems (with & 
ossible. T’ For examp e, we can consider discrete optimal 
e aid of Eqs. (1.3) and (1.7)) as multistep discrete controlled 

processes. 

4. Anrlyrlr of thr eQuationa. The problems posed in Sect. 3 can be sim- 
plified considerably. Nonlinear system (3. I) can be reduced to a linear one by the sub- 
stitution of variables D = Y- 1. Differentiating the idendty DY = E (E is a unit 
matrix), we obtain 

dY/dt = - Y(dD / dt)Y (Y =D-‘) (4.1) 

Substituting Eq. (3.1) into (4.1)) we obtain 

dY/dt e -A’Y -YA +v, Y (to) = Y,, = D-’ ($,) (4.2) 

Making use of Pontriaginf maximum principle [s], we construct the Hamiltonian H 
for the optimal tracking problem with functional (3.3) and Eqs. (4.2), 

H=P*(-A’Y --A+V)+pof(V, t) (Ws = i A2kAljk (4.3) 
j,k-L > 

Here pa is a constant, P is the matrix of associated variables (a symmetric rt X rr 
matrix), and the asterisk denotes the scalar (element-by-element) multiplication of 
matrices. The corresponding associated system is of the form 

dP/di CAP +PA’ (4.4) 

Let our problem be that of minimizing functional (3.3) under restriction (3.2) with 
the constant closed set u and the following conditions impcaed on funcdonals (3.5) 
at the end of the process: 

Ji= S D’k(T)P~P~= i IY-i(T)l’kQ~Q:=C~ (i=i,...,m;m<n) (4.5) 
j, k-1 j, k-1 
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Here cr are given constants, and the superscripts indicate the number of elemen6. 
By the maximum principle I’!, the optimal tracking problem is reducible to a boundary 
value problem for system (4.2), (4.4) under boundary conditions (4.2), (4.5) and the 
transversality conditions (A1 are constants) 

P”(T) = 5 A a,, l_l iay,k (isk=i,...,n) (4.6) 

The control v can be eliminated with the aid of the maximum condition for the 
function H of (4. S), i.e. 

P * V + pof( V, t) G sup with respect to V E U (4<r<T) (4.7) 

Here we can usually set p. s -4. We compute the derivatives in (4.6) by means 
of an identity similar to (4.1) , 

t?D / i3Yfk = -D(aY /i?Yj’)D (i,,k=i,..., n) 

Recalling the symmetry of the matrices 
that 

D, Y , we immediately infer from thfs 

aD”/ ey” = - D*Dk’ (r, 8, i, k = i, . . . ) n) 

Substituting this equation and relation (4.5) into condition (4.6). we obtain 

P”(T) =.- ; A, 5 D+(T)D”(T)q,‘q; = 
i-1 T,@_l (4.8) 

= - i WV~I,I'P(W,I~ =- ~~*IY-l(T)q,l'lY-'(T)q,ll 

i==L i-1 

(i, k= i.. . . , n) 

The resulting nonlinear matrix boundary value problem (4.2). (4.4). (4.5), (4.7), 
(4.8) can be reduced to a system of transcendental equations. Let the fundamental 
matrix X (t) of solutions for initial vector system (1.1) be known. Ma king use of 
identity (4.1) , we can write out the equatiom for the fundamental matrix and the 
matrices associated with it, 

dX/& =AX, X (to) =E, dX’/dt =X’A’ 

dX-l / dt = =_X-‘A, d (X’)-’ / dt = -_A ’ (X’)” (4.9) 

Now let us consider the matrices 

x, (t) = (X’)-vx-1, xs (t) = XCX’ (4.10) 

where C is a constant n X n matrix. Corn 
and m;mmg use of relations (4.9). we can read p1 

uting the derivatives of matrices (4.10) 

equation3 
y verify that these matrices satisfy the 
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dX, / dt = -A’X1 - X,A, dX,/dt =AX, +Xgi’ 

XI (to) = X, (to) = c (4.11) 

Comparin (4.11) with (4.2) and (4.4), we see that the matrix XI (t) is the general 
2 solution of q. (4.4) for the associated variables. Hence, 

P(1) =X(l) cx’(t) (4.12) 

where the constant matrix C is symmetric by virtue of the symmetry of the matrix 
p (0. 

The soltmon of inhomogeneous equation (4.2) can be found by the method of varia- 
tion of the arbitrary constants entering into the matrix X1 of (4.10). Setting Y = 
= (X’)-‘Y,x-l, we find with the aid of Eqs. (4.2), (4.9) that 

(X')-' (dY, / dt)X-’ = V 

From this we obtain the matrix Yl, and then the solution Y (t) of Cauchy problem 
(4.2) and the matrix D (t) which is the inverse of y (1) , 

y(t) = fx’(Ol--’ [Yo + ix’(r) V(r)X (r)d+ X-l(t) 
1, 

D(t)= x(t) pw +&T)?qT)x(r)dr]-lx’(t) (4.13) 

h 

The second equation of (4.3) determines the general solution of nonlinear matrix 
equation (3.1). Let the function v in Eqs. (4.13) be eliminated with the aid of 
condition (4.7) in which p. = -1. Substituting solution (4.13) for D (t) and 
(4.12) for p (t) into conditions (4.5) and (4.8), we obtain a total of n’ + m alge- 
braic equations with n* f M unknowns 
m constants a,). 

(na elements of the constant matrix c and 
The constants h, occur linearly in this system and are easy to eli- 

minate. Moreover, recalling that the matrix C is symmetric, we see that the problem 
can be reduced to a system of R (n f 1) / 2 algebraic equations with the same num- 
ber of unknowns. In similar fashion it is possible by means of solutions (4.12), (4.13) 
to reduce other o 

4 
timal uacking problems to s 

r 
stems of uanscendental equations. 

For example, et us require minimization o a functional of the form (3.5), 

/= i zP(T) qy (4.14) 
1. k-1 

under conditions (4.5), resuiction (3.2), and a resuiction on integral functional (3.3) 
(the uacking cost or time), 

T 

.Jo = s f (V, 1) dc = co 
to 

(4.15) 

In Eqs. (4.14), (4.15) g is a given n-dimensional vector and co is a constant. 
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This roblem is reciprocal to that considered above. The condition of the maximum 
princip e is of the same form (4.7). but P P is now an unknown constant. The transver- 
sality conditions can be written in a form similar to (4.8). 

Pik(T)=[D(T)ql’[D(T)qlL 
t-1 

(j, k=i, . . . . n) 

(4.i6) 

We have nr + m -I- 1 conditions (4.5), (4.15), (4.16) for determining n* + m + i 
constants C, A,, p0 into which we must substitute solutions (4.12)) (4.13) for P (1) and 

D (c) and eliminate Y by means of condition (4.7). If the problem posed does not in- 
clude restriction (4.15), then we must set p. = 0 in expression (4.7). 

Various problems of tracking optimization by the choice of discrete instants of mea- 
surement, i.e. in case (3.6)) can also be simplified by means of solution (4.13). Sub- 
stituting (3.6) into (4.13), we obtain 

D (T) = X (2’) [Do-’ + i x’ ($1 V, ($J X (f&]-’ X’ (T) (4.17) 

k=l 

The problem of the minimum of functional (4.14) for trackin 
B 

method (3.6) can now 
be reduced by substituting ex ression (4.17) into Eq. (4.14) to 
zing a function of the variab es tk. P 

e problem of minimi- 

6. Examplan. 1. Let equation of motion (1.1) be of the simplest form 

dtIdt= a* + b 0) (5.1) 

where I is the only phase coordinate (n = I), a is a constant, and b (:) is a function 
of time. The tracking process consist in measuring the instantaneous value of the pha- 
se coordinate; the measurement error dispersion per unit time is either equal to a con- 
stant q at every instant, or no measurements are made. The sum duration of the 
observations is given and equal to T, < T, where T is the duration of the tracking 
process. Without limiting generality we can also set to = 0. 

We are required to indicate a control method which will minimize the dispersion 
D (T) of the phase coordinate I (7’) at the end of the process. In the notation of 
Sects. 2and3wehavel=i, Q= I, V = B’l.The matrices D, 0, B, V, and P here 
become scalars, and the set cI# of (3.2) consists of two points: 0 and b,-l ; the func- 
don f of (3.3) is of the form 

1=0 for V=O,f=l for V = bob1 (5.2) 

The vector q in funcdonal(4.14) reduces to the scalar q = i and condition (4.5) 
does not apply, so that m = 0. The fundamental matrix x (1) defined by relations 
(4.9) reduces to the scalar function X (i) = cd, and solutions (4.12)) (4.13) become 

P (r) = ccwf D(T)=e~TIDal+Ss”~~(dd~]-l (5.3) 
0 

Here e and D, are constants. Condition (4.16) yields 

[P(T)=~~T==D~(~-) (5.4) 
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Recalling Eqs. (5.2) and (5.3) for P, we apply maximum principle (4.7) to obtain 

t! = b,-’ for cp 0). > 0. v=o for cp 0) < 0, 

9 = cPTb,-’ + p. (5.5) 

Since c > 0 by virtue of (5.4), it follows by (5.4) that the function ‘p (t) of (5.5) 
increases monotonically for 0 > 0 and decreases monotonically for o < 0. Hence, 
by (5.5), the optimal sacking law is 

v r= 0 for t < 3, Y = born1 for t > 8 (a > 0) (5.6) 
V - bm-’ for t < 8,, V L 0 for t > 8 (a < 0) 

Here 8 is the unique switching instant corresponding to the root of the monotonic 
function cp (1). Since the sum observation time is T,, it follows that 

e=T-T, for a > 0, 8 - To for (I < 0 (5.7) 

Substituting relations (5.6)) (5.7) into (5.3), we obtain 

D(T)=e == [&-I -J- I/, b,,-WleeaT (I _ e*T3]-l (a > 0) 

D (T) = ewT ‘[U&9 ‘t- $1, b~-W(e~~* - I)]’ (0 < 0) 

D (2’) = (Do* + b,,-ITo)* (a=O) (5.8) 

It is clear from (5.3) that for II = 0 me functional D ffi to be minimized does 
not depend on the aackin law and is given by formula (5.8) for any law. Equations 
(5.6) - (5.8) completely etermine rhe solution of the problem, i.e. the optimal f 
sacking law and the funcional, for all cases. The comtants E, p. can be found with 
the aid of Eq. (5.4) and the equation cp (6) = 0, but this is not necessary. The mean- 
ing of solution (5.6)) (5.7) is obvious: for D > 0, when the aajectories of Eq. (5.1) 
diverge, the measurements are best made at the end of the process; for o < 0, when 
they converge, measurements at the beginning of the process are more advantageous. 

2, Let us take the equations of motion of the system in the form 

dt,ldt = +r, dt, j dt = b (1) tfi== 2) (5.9) 

Here rl is the coordinate, tr the velocity, and b (r) the acceleration for a mecha- 
nical system with one degree of freedom. Let the measurements be made at discrete 
instants, the coordinate I~. with the error dispersion bl being measured at the instants 
tr, 1 = i, . . ., 8, and the velocity 4 with the error dispersion bs at the imtants 
r~‘, i - i, . . . , r’ . The dispersions d,, d, for the coordinate zl (0) and the velocity 
*(O),,respectively, at the initial instant r, = 0 are given; the error brackets for these 
quantities are independent. In the notation of Sects. 1 - 4 we have 

(5.10) 
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The fundamental matrix 2 (1) for system (5.9) is defined in accordance with gene- 
ral relation (4.9). Substituting expressions (5.10) into general solution (4.13). we obtain 

(5.11) 

From (5.11) we see that the matrix D (2’) does not depend on the instams rj’ at 
which the velocities are measured; their choice is therefore arbitrary. Let us substitute 
variables, setting 

11 = n,, a,- = b;lo, 4-l + r’b,-1 = bl-lTb (5.12) 

Here 8, are the dimensionless instants of measurement of the coordinate, and 
a > O,ab > 0 are dimensionless constan& 

tion expression (5.11) can be written as 
After substitutions (5.12) and simplifica- 

D(T)= T’[(a+$+y)-z’j 
T’(a+r+b+y-2s) ~(o+r--z) 

a+? 
t=e1 + . . . +e,, y=ep+ . . . +e,’ (5.13) 

Let us pose the following optimal tracking problem. We are to choose the instants 
tl of coordinate measurement in such a way as to minimize the dispersion of the ve- 

locity r, (?“) at the end of the process. Let us construct the appropriate functional of 
the form (4.14)) making use of Eq. (5.13)) 

J= 
bl(a + r) 

T’I(a+r)b+cpl ’ 
(I = (a + r) y - 2’ (5.14) 

The problem of a minimum velocity dispersion, i.e. that of minimizing expression 
(5.14)) reduces to the problem of maximizing the function 

(5.15) 

under the conditions o ( 8, < i, t = i, . . , , r. Applying the Cmchy-miakowski 
inequality. we obtain 

This implies that $ is a pcsitive-definite quadratic form in 8,. It is clear that its 
maximum on the r-dimensional cube 0 < et’< I, 1 = i, . . . ,r, occurs at one of the 
vertices of the cube. Hence, some of the quantities 0, in the optimal solution are 
equal to zero, and the rest are equal to unity; at least one of the 0, is equal to unity, 
since the point 8s - 0, s.- i, . . ., r 

We therefore have 
minimizes function (5.15). 
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tf = Tt’l, =0 for i(i(r-k 

4 =TBi=T for r-k<i<r (1 6 k C 4 (5.i6) 

Here k is the number of measurements at the end of the process. To determine k 
we substitute (5.16) into (5.15)) 

J, = (a + r) k - k’ (5.17) 

and then find the maximum of function (5.17) with respect to integers k from the 
interval i < k Q r. The maximum of (5.17) occurs for the integer k closest to 
(a + r) / 2 which does not exceed 
brackets, we write 

r.’ Denoting the whole part of a number by square 

k = min (r, [(a + r + 2) f 2]), 0 = bIdrV1 (5.13) 

Relations (5.16) - (5.18) completely determine the optimal tracking law which re- 
duces to the fact that k measurements are made at the end, and remaining measure- 
ments at the beginning, of the process. Substituting expression (5.17) into (5.14) we 
obtain the value of the functional to be minimized (i.e. the dispersion of the velocity 
error at the end of the process). 

J 
!h (0 + r) 

= Ta[(o+r)(b+k)_/q * a=bld17, b= 
d,-’ + r’ba-l 

bl’T 
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