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The present paper concerns the optimization of the tracking process (with allowance
for measurement errors) in a systern whose motion is described by linear differential
equations, Itis shown that under certain assumptions the problem reduces to one of
ordinary optimal control, Further analysis using the maximum principle enables us to
reduce the initial problem to a system of ranscendental equations, Examples illustra-
tinfg optimal tracking strategy in s&eciﬁc cases are discussed.

roblems of optimal contrel in the absence of complete information, i.e, with in-
complete and inexact measurements or observations, are of great interest in control
engineering. Various approaches to optimal control and wacking problems with incom-
plete information are considered, for example, in [1-3] whose authors employ both
probabilistic and minimax formulations,

1, The Initial relations, Let the state of a system at any instant be defined
by an  n-dimensional phase coordinate vector z. The law of variation of Z (¢) takes
the form of a determinate linear system of ordinary differential equations,

dr/dt =4 ()z 4 b (1) (.1)

where 4 isan n X n mauix and $ is an dimensional vector, Systemn (1,1) can
be regarded in many cases as a system in variations near the theoretical (nominal) wa-
jectory of the initial nonlinear system,

The motion of the system is considéred over the time interval [z, T the phase

coordinates of the system are observed (measured) at the fixed instants Loy LiseeesiN =
= T'. Here t; <tp, for k = 04,....N — 1. By "observation” at each ins-
tant of time £, we mean the approximate measurement of certain linear combinations
of the components of the vector z (f,), i.e. measurement of the vector Q@ z (¢,).
Here @y is a given rectangular mawix with I, rows and 1 columns. The integer
Iy > 0 is the number of scalar parameters measured at the instant Z,, & = 0,1,.
..,V. We assume that the error of each observation is a random  [,~dimensional
vector quantity distributed according to a normal law with zero mathematical expect-
ation and a known correlation matrix By, The term “correlation matix” is used throu~

ghout the present paper to refer to an unnormalized correlation mawix (a second-mom-
ent matrix). The measurement error at a given instant is assumed to be independent of
the errors at the other instants,

Thus, the result of observation at the instant £, is a random I, -dimensional vec~
tor quantity y, with a normal distribution law. Its mathematical expectation is equal

to the true value of Q,x (ty), and i I, X I, correlation mawix is known and equal
to Bg.
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The values of the phase vectors at the instants of observation are related by the linear
expressions

z(ten) = Axz(8) + by (k=0,1,..., N~1) 1.2)

Equations (1,2) follow from the linearity of system (1.1). The matix A 5 and the
vector b, depend on the matrix A and the vector & in the interval [y, ¢4,,].
Explicit expressions for 4, and b, can be readily written by the method of variation

of arbitrary constants provided we know the matrix of fundamental solutions for the homo-
geneous equation cotresponding to (1,1). Relations (1.2) are also valid if the system mo-
tion is described by finite-difference equations or if equations of motion (1.1) are impul-
sive in character (e.g. if & (¢) is a delta function),

Let the probabilistic distribution of the initial value of the phase vector z (¢, — 0)
just before the start of the process be known. We consider this distribution to be normal
with the mathematical expectation 2, and the correlation matrix ). The purpose of
tracking is to enable us to indicate the mathematical expectation and correlation mat-
rix for an unknown instantaneous value of the phase coordinate vector at any instant.

These quantities (the mathematical expectation and correlation matrix) vary, first,
b¥ virtue of the equations of motion, and second, as a result of the measurements. All
of the probabilistic distributions are assumed to be normal, and the results are treated

by the method of maximum plausibility [4]. The analytical scheme which we describe
and conversion formulas (1, 3) are given in [3],

Let us denote by z, and z,* the mathematical expectations for the unknown vector
z (t)) at the instants ¢, — O and ¢, - O, respectively, i.e, just before and just
after the K-th measurement (k — 0,1,...,N).By D, and D x* we denote the
correlation matrices for the vector z- at the instants ¢, — O and ¢, + O.

It can be shown that the following conversion formulas are valid (the primes denote
transposed matrices);

z* =2 + D* QB (v, — Qimi), Di* = (D + QB Q)™ (1.3)

To derive (1, 3) we note that the quantity =, can be regarded as the result of mea-
suring the phase vector z (t;) with the correlation matrix Dy, and yj as the result
of measuring the vector Qz (#4) with the correlation mawix By. Let us construct the
plausibility function for these two measurements by the method of maximum plausibi-

liy [,
L=Coxp (=1 Dy (2p* — zp), (%* — z3))) X
X exp [— Yy (Br7' (Qnzp* — ¥a) (Qnzp* — ¥2))) (1.4)
Here the constant C does not depend on z,*. The comma denotes scalar multipli-
cation of vectors. The required mathematical expectation can be determined from the

maximum condition for function (1,4) with respect to z,*. Setting the gradient of the
funcdon L with respect to z,* equal to zero, we obtain

Dyt (ap® — sp) + QW'BA (Qpxa® —yn) =0
This yields the relation

z)\* = FhD,,'lz,, 4 FrQp'B ™y, Fp wm (D\14 Oh'Bh—l 0&)-1 (1.5)
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The quantities z,*, zx, yx can be regarded as normally distributed random quanti-
ties with the correlation matrices D,*, Dy, By, respectively; the quantities zx, ya
are independent. Linear relation (1.5) then implies the following relationship [*] for
the second-moment matrices:

Dy* = (FAD\™0)D )y (FyD )™)Y + (FRQx'By ) By (FRQx'ByY =
= FyDy'Fp + FpQp'By1QpFp = Fy Dy + Qx'By71Qn) £y =
= FhFh—le = Fh = (Dk-l + othok)-l (1.6)‘
In writing out transformations (1.6) we used Formula (1.5) for F,, as well as the
symmetry property of the matrices D, By, £, and their inverses, By some elemen-
tary transformations we find from (1.5) and (1, 6) that
o = x5+ FRQuBy ™y — zp + FipDy ™tz = zp + FrQy'By7lyp —
— Fy(Fp ' =Dy )z = 2+ FpQp'Bylyp — FrOn'By 102y =
= zp + FROp'By (yp — Qnza) = zx + Dp* Qp'By™* (yp — Qaza)

Since no measurements are made in the invervals between the instants ¢, and fj4y ,
we can write the following expressions on the basis of linear relations (1.2)

xk*l = Ak.’tk‘ + bk’ Dk+‘ = Aka‘Ak’ (1.7)

Relations (1.3) and (1. 7) are our point of departure; they describe the variation of the
mathematical expectation and correlation matrix as a result of tracking process (1. 3)
and motion process (1. 7). In order to carry out computations using recursion formulas

(1.3) and (1.7) we need to choose initial values x,, D0 and measurement data ¥ x.
The variation of the correlation matrix does not depend on the measurement data ¥ a
and can be computed in advance.

2., Taking the Iimit, Let us set

1=(T—1)/N, ti=to+kr (*k=0,1,...,N)
and introduce mawices B (f) and Q (¢) such that

By=B(t)v?, Q=0() (k=01,...,N) (2.1)
We now take the limit, making 7 —0, N —» o0 with Nt =T — t,= const.

This passage to the limit corresponds to the case of very frequent observations (continu-
ous observation in the limiting case). The error of each observation is then large (the

elements of the mawrix B, are proportional to t71), but the accuracy over a finite
interval is finite,
From Eq. (1.1) we find that to within higher-order small terms

Z (tag) =2 (th) + tlAd (tp)x (ta) + b (¢4)]
Comparing this relation with Eq. (1.2), we find that
Ay =E 434 (t3), by = b (t3) (2.2

where E isan n X n unit mawix, Substituting Eqs. (2.1), (2.2) into Egs. (1.3),
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we find that to within higher-order small terms
zx* =2z + Dy Q' (1A)B (t4) lys — Q (tN)z4]

Dy* ={DyME + tD,Q' (t))B (1) Q )} = E — D\ Q' (t)) x
X B (t3)Q (tx)IDy =Dy — D, Q' (ta) B (tx)Q(ts)Dy

Substituting these relations and Egs. (2.2) into Eqs. (1.7) and again omitting small
terms of order T? and higher, we obtain

Zpsy = Tn + Atz +5(ts) +D Q)BT 1)y — Qta)zal} (2.3)
Dyw =Dy + tlA@t)Dy +DA'(ty) — D, Q'(tx)B7Hta) Qtr)D ]

We denote by § (£) and D (f) the mathematical expectation and correlation mat-
rix for the phase vector Z () computed at the instant ¢. Then x, = §(t,), D, =
= D (ty) for k =0, 1, ..., N. Moreover, we denote by y (¢) the result of
measurements at the instant ¢,so that ¥x =¥ (£x) for f — 0,4,...N. Taking the
limitas t ~» 0, we obtain from (2.3) the differential equations

d§ /dt =AE +b +DQB! (y — QF) (2.4)
dD | dt = AD +DA' — DQ'BQD (2.5)

The initial conditions for Egs. (2.4), (2.5) are the equations E(t) =z, D () =
= D,, which specify the mathematical expectation and the correlation mawix for the
phase vector x (¢,) before the start of the process, Equation (2.4) is a stochastic diff-

erential equation, and Eq. (2.5), which does not depend on the random measurement
result, is an ordinary differential equation.
If the measuwrements are sufficiently frequent, then it is convenient to consider differ-

ential equations (2.4), (2.5) instead of finite-difference equations (1.3), (1.7). The

function B (¢) characterizes the measurement error per unit time, However, Egs. (2.4),
(2. 5) can also be used when the measurements are made at discrete instants, In this case

the function B7! () is impulsive (of the delta function type).

We note that B (#) is an ! X I square matrix, and that ¢ is an ! X n rectangular
matrix, The number 1 (¢} is equal to the number of scalar parameters measured at the
instant ¢ and can vary in the course of motion,

Equations (2.4), (2.5) are also valid when the mauix 4 and the vector & insystem

(1.1) depend on the control or on the external perturbations. It is important to note that
Eq. (2.5) does not depend on the function 3, which can be arbitrary,

8, Tracking control, Letus write Eq. (2.5) in the form
dD/dt = AD + DA’'—DVD (v = Q'B™Q) (3.1)

It is easy to see that like the mawices B and D, the n X n mawix V is symm-
etric and positive-definite, It characterizes the accuracy or "intensity” of the tracking
process (V = ( if no observations are made). The mauix V depends on how many
and which parameters are measured (this is determined by the mawix (), and on the
error brackets of these measurements (these are characterized by the mawix B).

If the wacker is able to vary the selection of observed parameters or the -accuracy of
their measurement, then the mawix ¥ in Eq. (3.1) can be regarded as a controlling
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function. It can be subjected to the restrictions
VOeU() w<t<T) (3.2)

where U (t) is a closed set of mawices characterizing the tracker's freedom of choice.
Let us also introduce the integral functional

T

Jo= ) F(V, tdt (3.3)

Here the scalar functiont f is defined for all ¢ & [ty, T], V & Uand characterizes

the cost of the observations.
For example, let the set U for any ¢ consist of two fixed matwices O and V,, and

let the function f be given by the relations
£(0, ) =0, f(Ve, 1) =1

In this case the racker can either conduct his observations in a fixed way (using the
matix V) at every instant, or he can refrain from observation. The functional J

of (3.3) then sim(ply represents the total duration of the wacking process,
The purpose of tracking is usually to determine the values of certain functions of the

phase coordinates at specific instants with a prescribed or a minimal error. Let Tl,..,,
T,, be instants specified in the interval [¢y, T'], and let 2z,,...,2z, be the scalar
parameters of interest to the wracker at these instants, Some of the quantities 7', may

coincide, which means that several parameters are of interest at some of the instants.
Limiting owsselves, as in system (1.1), to a linear approximation (in the neighborhood

of some nominal trajectory), we represent the parameters z, as linear functions of the
phase coordinates,

z,=(q‘,z(T4))+a‘ (i=1,...,m (3'4)

Here ¢, are specified n-dimensional vectors and @, are constants. Recalling that
the correlation matrix for the vector z (T',) is equal to D (T ‘),we; apply certain
familiar rules [4] to (3.4) to obtain the dispersion J . of the quantity z,

Ji= 3 DM(Tygigx  (i=t,...,m) (3.5)

i, k=1

Here and below the superscripts represent the numbers of element in the vectors and
matrices. We note that the quantities given by (3. 5) are linear with respect to the ele-

ments of the matrix ), which dPlay the role of the phase coordinates. Functions (3. 5)
characterize the errors involved in determining the parameters of interest,

Now let us formulate some variants of the optimal wacking problem. We can pose
the problem of finding the control ¥ (#) which satisfies restrictions (3. 2) for all
t & [¢t,, T)and minimizes functional (3, 3) under the condition that functionals (3. 5)
assume specified values. The phase coordinates D (£) are determined by Egs. (3.1)
and the initial condition D (f3) = D,. This problem is a conventional optimal prob-
lem with an integral functional, a restriction on the control, and linear multipoint
boundary conditions. The number of phase coordinates and controlling functions, i.e.

the number of elements in the mawices D and ¥V is n?® . However, since these
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mauices are symmetic, we need consider only n (n +- 1) / 2 of their components,
Instead of minimizing the functional Jo of (3,3) (the tracking cost) we can require

minimization of one of the functionals J o of (3.5), i.e. we can minimize the error

of determining one of the parameters (3.4). The remaining functions (3.5), as well as

functional (3.3) may be given in this case.
If the measurements are made at discrete instants, then

V()= 2 Ve(9)d(t—t) (3.6)

k=)

Here ¥ is the number of measurementws, § is the delta function, ¥V, (t) are the
prescribed mawix functions (which may be constant), and £, are the instans of mea-
surement, We can pose the problem of optimal choice of the numbers Z, from the
interval {¢,, T] or from a part of this interval in such a way as to minimize one of

the functionals of the form (3, 5) (possibly for given values of the other functionals).
This problem is one in nonlinear programming. Still other formulations of tracking
process optimization are possible, For example, we can consider discrete optimal
tracking problems (with the aid of Eqs. (1.3) and (1. 7)) as multistep discrete contrclled
processes.

4, Analysis of the equations, The problems posed in Sect. 3 can be sim-
plified considerably. Nonlinear system (3.1) can be reduced to a linear one by the sub-
stitution of variables D = Y-, Differentiating the idendty DY = E (E is a unit
matrix), we obtain

dY [ dt = — Y(@D | dt)Y (Y =D (4.1)

Substituting Eq. (3.1) into (4.1), we obtain
dY [dt = —A'Y — YA 4V, Y(@) =Yy =D (to) (4.2)

Making use of Pontriagin's maximum principle [*], we construct the Hamiltonian
for the optimal tracking problem with functional (3. 3) and Eqs. (4.2),

H=Pus(—AY—YA+V)+pf(V,1) (A,. Ay= D A,"‘A,"‘) (4.3)

j k=1

Here p, is a constant, P is the mawix of associated variables (a symmewicn X n

matrix), and the asterisk denotes the scalar (element~by~element) multiplication of
matrices, The corresponding associated system is of the form

dP [ di =AP 4 PA’ (4.4)

Let our problem be that of minimizing functional (3. 3) under restriction (3, 2) with
the constant closed set U and the following conditions imposed on functionals (3, 5)
at the end of the process:

n

n ) )
Ji= X D*(T)qler= 2 (Y1 (TN*gjg¥=¢ (=t,...,mmn) (45)

J, ki §, km1
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Here ¢, are given constants, and the superscripts indicate the number of elemens.

By the maximum principle [*], the optimal tracking problem is reducible to a boundary
value problem for system (4.2), (4.4) under boundary conditions (4.2), (4.5) and the

wansversality conditions (A, are constants)

a8/

m
P”(T) = 2 7‘('8),7‘

§am]

G, k=1,...,n) (4.6)

The control V can be eliminated with the aid of the maximum condition for the
function H of (4.3), i.e.

PV +pf(V, t)>supvithrespect o VElU  (<t<T) (4.7)

Here we can usually set po = —1. We compute the derivatives in (4.6) by means
of an identity similar to (4. 1),

D) oY* = —D@Y [0Y™)D (G k=1,...,n)

Recalling the symmety of the mawrices D, Y, we immediately infer from this
that

aD"™ | eY™ = — D*p* r. o, k=1,..., n)

Substituting this equation and relation (4. 5) into conditon (4.6), we obtain

ix _ m n . e e
P*(T) = ‘Z‘,lx,'f‘_,_lD" (T)D™(T)q,q, 4.8)

=— A MD(Mg P ID(T)g) =— ;zx.n’-l(r) g (Y 1(T)q,)*
1

fax]
(i'k=1o-'-on)

The resulting nonlinear matrix boundary value problem (4.2), (4.4), (4.5), (4.7),
(4. 8) can be reduced to a system of transcendental equations. Let the fundamental

matix X (f) of solutions for initial vector system (1,1) be known., Making use of
identity (4.1), we can write out the equations for the fundamental matrix and the
matrices associated with it,

dX /dt =AX, X (t,) =E, dX'/dt =X'A’
AX1/dt = —X"4, d(X)V/dt =—A"(X)? (4.9)
Now let us consider the matrices
X, (1) = (X')CX", X, (t) = XCX’ (4.10)

where C is a constant n X N matrix, Comfludng the derivatives of matices (4. 10)
and marung use of relations (4,9), we can readily verify that these marwrices satisfy the
equations
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Xm/dt ——-—A,Xl—XlA, dX’/dt =AX’ +X’A’
Xy (t) =X, (t) =C (4.11)

Comparing (4.11) with (4.2) and (4.4), we see that the mawix X, () is the general
solution of Eq. (4.4) for the associated variables. Hence,

P(t) =X (1) CX'(2) (4.12)

where the constant mamix € is symmetic by virtue of the symmeny of the matrix

P (1).
The solution of inhomogeneous equation (4.2) can be found by the method of varia-

tion of the arbitrary constants entering into the matrix X, of (4.10). Setting ¥ =
= (X')'Y,X™, we find with the aid of Eqs. (4.2), (4.9) that

(X') @Y,/ d)Xt =V

From this we obtain the matrix Y, and then the solution Y () of Cauchy problem
(4.2) and the mawrix D (¢) which is the inverse of Y (2),

t
Y (t) = (X' () [Yo +{ X @vmx @ dr] X-1(t)
t

r 3 443

D(t)= X (1) [Do‘.l SX'(t)V(r)X(t)dr] "X () (43

The second equation of (4. 3) determines the general solution of nonlinear matrix
equation (3.1), Let the function V in Egs. (4.13) be eliminated with the aid of
condition (4. 7) in which p, = —41, Substituting solution (4,13) for D (t) and
(4.12)for P (t) into conditions (4.5) and (4.8), we obtain a total of n* 4+ m alge-
braic equations with n® -+ m unknowns (n?®elements of the constant mawix € and
m constants l,). The constants 7‘( occur linearly in this system and are easy to eli-
minate, Moreover, recalling that the matrix € is symmetric, we see that the problem

can be reduced to a system of n (n + 1) / 2 algebraic equations with the same num-
ber of unknowns, In similar fashion it is possible by means of solutions (4. 12), (4.13)
to reduce other o1ptimal tracking problems to systems of transcendental equations.

For example, let us require minimization of a functional of the form (3. 5),

n
J= > p*1) e (4.14)
1, k=1

under conditions (4, 5), restriction (3.2), and a restriction on integral functional (3. 3)
(the tracking cost or time),

T
,J.=S J 0V, ) de =g (4.15)
ta

In Eqs. (4.14), (4.15) ¢ is a given n-dimensional vector and ¢, is a constant,
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This problem is reciprocal to that considered above, The conditdon of the maximum
principﬁa is of the same form (4.7), but p is now an unknown constant. The transver-
sality conditions can be written in a form similar to (4.8),

P*m=ip@ e’ 10T e1* - X A (D(T) o (D(T) g)* (4.16)
{am]
(/, k=1, ..., n)

We have n* + m -+ { conditions (4.5), (4.15), (4, 16) for determining n® 4+ m + 1
constants C, A;, p into which we must substitute solutions (4. 12), (4.13) for P (f) and

D (1) and eliminate V by means of condition (4, 7). If the problem posed does not in-
clude restriction (4.15), then we must set p, = 0 in expression (4.7).

Various problems of tracking optimization by the choice of discrete instants of mea-

surement, i.e. in case (3.6), can also be simplified by means of solution (4. 13). Sub-
stituting (3. 6) into (4.13), we obtain

D(T)=X(T) [Do‘l + 2 X (@tIV, (8) X () ]“ x (T 417)
k=1

The problem of the minimum of functional (4. 14) for trackir:E method (3. 6) can now
be reduced by substituting expression (4, 17) into Eq. (4.14) to the problem of minimi=-
zing a function of the variables ¢,

8. Examples, 1. Letequation of motion (1.1) be of the simplest form

dzfdt =az+ b(t) (5.1)

where z is the only phase coordinate (n = 1), ¢ is a constant, and % (¢) is a function

of time, The wacking process consists in measuring the instantaneous value of the pha-
se coordinate; the measurement error dispersion per unit time is either equal to a con=
stant j, atevery instant, or no measurements are made, The sum duration of the

observations is given and equal to T, < I',where T is the duration of the tracking
process. Without limiting generality we can also set ¢, = 0.

We are required to indicate a control method which will minimize the dispersion
D (T) of the phase coordinate x (T) at the end of the process. In the notation of

Sects, 2 and 3 we have ! = 1, Q = 1,V = B™) The matrices D, @, B,V, and P here
become scalars, and the set U’ of (3,2) consists of two points: 0 and bt ; the funce

tion / of (3.3) is of the form
f=0 for V=0,f=1 for V.= b1 5.2)
The vector ¢ in functional (4, 14) reduces to the scalar ¢ = 1 and condition (4. 5)

does not apply, so that m = 0. The fundamental mawix X (#) defined by relations
(4.9) reduces to the scalar function X (¢) = %, and solutions (4. 12), (4.13) become

T
P)=ce®™ D(T)=cwT [Do‘l + S Ty (r)ac] ! (5.3)
[ ]

Here ¢ and D, are constants, Condition (4.16) yields
[P (T) = ce*®T = D*(T) (5.4)
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Recalling Eqgs. (5.2) and (5. 3) for P, we apply maximum principle (4.7) to obtain

V==5" for 9(2).>0, V=10 for ¢(f) <0,
@ == ce*®Thy™1 + p, (5.5)

Since ¢ > 0 by virtue of (5.4), it follows by (5.4) that the function ¢ () of (5. 5)
increases monotonically for 8 > 0 and decreases monotonically for a < 0. Hence,
by (5.5), the optimal wacking law is

V=0 for t<6, V=087 for t>0 (a>0) (5.6)
V = by for t<0,‘ V=0 fort>0 (a<0)

Here 8 is the unique switching instant corresponding to the root of the monotonic
function ¢ (¢). Since the sum observation time is T,, it follows that

0=T—17T, for a>0, 0=7T, for a <0 (5.7
Substituting relations (5. 6), (5. 7) into (5. 3), we obtain

D (T)=e®T [Dy71 4 Y3 b1a712T (1 — 2Tt (2> 0)
D(T) = e®T D 4 Yy 410 e¥ T — 1)) (a<0)
D(T)=(D*+bTo)t  (a=0) (5.8

It is clear from (5, 3) that for w = 0 the functional D () to be minimized does

not depend on the wacking law and is given by formula (5. 8) for any law, Equations
(5.6) ~ (5.8) completely determine the solution of the problem, i.e. the optimal

tracking law and the funcional, for all cases. The constants &, p, can be found with
the aid of Eq. (5.4) and the equation @ (8) = 0, but this is not necessary. The mean-
ing of solution (5. 6), (5.7) is obvious: for & > 0, when the trajectories of Eq. (5.1)
diverge, the measurements are best made at the end of the process; for a < 0, when
they converge, measurements at the beginning of the process are more advantageous.

2. Let us take the equations of motion of the system in the form

dz, | dt = z, dz, f dt = b (1) (= 2) (5.9)

Here =, is the coordinate, 23 the velocity, and b (#) the acceleration for a mecha-
nical system with one degree of freedom. Let the measurement be made at discrete

instants, the coordinate z, with the error dispersion &, being measured at the instants
4, t=1,...,» and the velocity # with the error dispersion 3, at the instants
ty,j=1,..., 7 . The dispersions d,,d, for the coordinate z, (0) and the velocity
24 (0), respectively, at the initial instant 4 = 0 are given; the error brackets for these
quantities are independent, In the notation of Sects. 1 - 4 we have

dy 0 _Jit
Do-_—_lol d-n' X(t)_lo 1 610

r=3 157 tfoc—+ B8 defre—r
j=1

[T
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The fundamental mauix X (8) for system (5, 9) is defined in accordance with gene-
ral reladon (4, 9). Substituting expressions (5.10) into general solution (4. 13), we obtain

1 7] a4 h Yy, 10
PO=l e sy g4+t ) I s
dh=t+ .+t N=tr+..+ 40 (5.11)

From (5.11) we see that the matrix D (T) does not depend on the instants ty at
which the velocities are measured; their choice is therefore arbitrary. Let us substitute
variables, setting

t = T8, 4! = b,"1a, a1 4 r'byt = B, ITY (5.12)
Here 6; are the dimemsionless instants of measurement of the coordinate, and

a > 0,5 >0 are dimensionless constants, After substitutions (5, 12) and simplifica~
tion expression (5. 11) can be written as

DT b, T a+4r4+bty—21) T(a4r—z)
= a+r)(d+y)—=2) [ T(a+r—2x) a4r
z2=0;+...4+0,, y=062+..40, (5.13)

Let us pose the following optimal wacking problem. We are to choose the instants

t; of coordinate measurement in such a way as to minimize the dispersion of the ve-
locity z4 (T) at the end of the process, Let us construct the appropriate functional of
the form (4.14), making use of Eq. (5.13),

b (a +
J= Tl[(;f:r)l:).{-w] ’ V=(@a+r)jy—at (5.14)

The problem of a minimum velocity dispersion, i.e. that of minimizing expression
(5.14), reduces to the problem of maximizing the function

YO B =(a+1) 3] 00— (3 &)’ (5.15)
{mm] i)

under the conditions 0 < 6; <1, ¢ =1, ..., r. Applying the Cauchy-Buniakowski
inequality, we obtain

'l’=aé 94’+(z': 1’) (5"_, 0(')—(2 9()’>d§r‘_, 0*>0

f=1 {=my fum] =1 fam]

This implies that ¥ is a positive~definite quadratic form in 6. It is clear that its
maximum on the r-dimensional cube 0 € 07 4,1 =1,...,7, occurs at one of the
vertices of the cube. Hence, some of the quantities §, in the optimal solution are
equal to zero, and the rest are equal to unity; at least one of the 6, is equal to unity,
since the point 8; = 0, + =14, . .., r minimizes function (5.15).

We therefore have
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=T =0foo IiI<r—&%
4 =T0 =T for r—k<ir 1<k (5.16)

Here k is the number of measurements at the end of the process. To determine %
we substitute (5. 16) into (5. 15),

VY= (a+r)k— Kk .47

and then find the maximum of function (5,17) with respect to integers & from the
interval 1 < k < r. The maximum of (5.17) occurs for the integer k closest to

(a + r) / 2 which does not exceed r. Denoting the whole part of a number by square
brackets, we write

= min {r, [(a 4 r -+ 1)} 2]}, a = byd,* (5.18)

Relations (5.16) ~ (5.18) completely determine the optimal tracking law which re~-
duces to the fact that ¥ measurements are made at the end, and remaining measure-
ments at the beginning, of the process, Substituting expression (5, 17) into (5. 14) we
obtain the value of the functional to be minimized (i.e. the dispersion of the velocity
error at the end of the process).

by (a 1) dy !+ r'by7t
J= Tija+r)(b+ k) —k) * a = by, b='_bF7r:——
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